HDL-TR-2192
March 1991

AD-A234 505

EMP Code Performance Comparisons for IBM RS 6000
Workstations, Models 320 and 530

by William T. Wyatt, Jr., and Christopher S. Kenyon

Approved for public release; distribution unlimited.

W

v

U.S. Army Laboratory Command
Harry Diamond Laboratories
Adelphi, MD 20783-1197

The findings in this report are not to be construed as an official Department
of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the
originator.

REPORT DOCUMENTATION PAGE Z‘;’,Z’ﬁ':”z";zfma

Pubic reporting burden for tius colk of 18 dto ge 1 hourpor p including the tme for revs , h g data
gathenng and maintaining the data needed, and L g the col ofinf Send ¢ lfn b or ln othor aspect of ths
collection of information, mchding wg%mons for roduang ha burdon [W hington Head: Semvices, D f Opo ns and Ropom 1215J0ﬂomn
Davis Highwary, Sufte 1204, A 22202-4302, and 1o the Office of M g and Budget, Pap & Red Propd (o7044)188) g
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1991 Interim, from 1 Aug to 1 Sept 1990
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS
EMP Code Performance Comparisons for IBM RS 6000 Workstations,
Models 320 and 530
PE: 62715H
6. AUTHOR(S)

William T. Wyatt, Jr., and Christopher S. Kenyon

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Harry Diamond Laboratories il
2800 Powder Mill Road HDL-TR-2192
Adelphi, MD 20783-1197

9 SPORSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

U.S. Ammy Laboratory Command
2800 Powder Mill Road

 Adelphi, MD 20783-1145

e

11. SUPPLEMENTARY NOTES

AMS code: 9700400.4201
HDL PR: E300E3

122, DISTRIBUTION/AVAJLABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved fcr public release; distribution unlimited.

13. ABSTRACT (Mavimum 200 words)

Executing electromagnetic pulse (EMP) codes on personal computers and workstations, in addition to mainframe
supercomputers, has been a goal of research in recent years, Until now, personal computers and workstations have
offered insufficient resources to make this goal reachable. We present some results of limited comparisons made
between IBM RISC System 6000 model 320 and 530 workstations, several 80286 and 80386 personal computers,
and IBM 3090 and Cray X-MP mainframe supercomputers. We emphasized floating-point speed in execution
of several small, medium, and large Fortran-based computer codes, including a number of EMP codes. We show
some additional results for the Dhrystone benchmark. The comparisons clearly place the RS 6000 workstations
close to the mainframe systems tested in speed and memory capacity. The RS 6000/530 system ran the Dhrystone
benchmark three times faster than the Cray X-MP, and ran small scalar Fortran benchmarks as fast as the Cray
X-MP. Some large codes, which were able to restrict frequent data references to the RS 6000 high-speed memory
cache, ran about two times faster than other large codes. Cache-efficient medium-sized codes ran faster than other
medium-sized codes, but not as much as a factor of two. The “xIf” Fortran compiler for the RS 6000 performed
very well on severe tests of reliability and code optimizaticn. We conclude that the RS 6000 models tested can
run mainframe-class EMP codes close to the uscr and his interactive graphical interface.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Benchmark, Fortran, Whetstone, Dhrystone, workstation, EMP, computer, 22
16. PRICE CODE
software, IBM, RISC
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
QF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-550¢ Standard Form 298 (Rev. 2-89)
Prascnbed by ANSI SW, Z39-18
208102

Contents

Page

Lo INEPOQUCLION ...ccovnrerircrencicncnnnneteessssenssesssessnsesassassssssessatensesssssssssssssossssassessssasasssssnssons 5
2. Compatibility With Other SYSIEINSc.c.oeceieicineneeereeeseseneeseeresnesesssassesesasasssssscasons 6
3. Speed COIMPATISONScccocerererrerereeerreeenarresesessesesssessesssesesssseressssesesessasesestssssassasssensessssses 7
3.1 Dhrystone Comparisonc...... teesreterentensatensnesntesrtarsestsstrssasanessnsatestnsssssttitsussssrttess 9
3.2 WhetStone COMPATISON.....cccuerrerrereresrerresessesesesessssessnssssasesesssasssssssesassssssssssassasansesssssse 10

3.3 FAT Comparison............. reeetesetteaesttesteatasstesaestsr e et antrts s esas s sateateR s st entsrtebtbssa s st s s nttebee 12
3.4 SVD COMPATISON....ccurreueururrrnrersnsacssesesssnssmssssesessscscnsassssescscstsessssessassesssssssssssssssassonsrenses 14

3.5 Comparison 0Of Medium-SiZe COAES....ccccrerrrrererereeerenrarsreseseseesesssessasassessssssssesssrsasscsesses 15

3.6 Comparison of Large-Size COdescoevveierrircrcceniencrcesuensesssisesescsssissssesssesesssconssnsnas 16

4., Conclusionsccocenvernenees ceereverene ceoresesesertesessten e aets s aatsaeRe e e e ses iRt besssa st srsaaebsrerass 18
5. References ceeensssanssssnsasnsnes sestereeasassnsnasstitesentsssenensnsrterentne resserssentsasasasssasasnirins 20
Distribution restsasssanssensassensssessannes sesvenssenene rereesereneeas e st e e e ressassessnenansesasens cesrereresnsnsases 21

Tables

1.. Dhrystone benchmark results tereerresssesressrseresssessesrsertssentessaeerrarens reerrersarestnenasens wee 9
2. Results of single-precision Whetstone benchmark .. veeveneaeserenses 10
3. Results of double-precision Whetstone benchmark cerreneaseerns vrereresnestsasasnsares coevenerens A1
4. Results of single-precision F4T benchmarkcceeeeeeene crevesvsnenns veeetrnesarssessesassrsenenaass e 12
5. Results of double-precision FAT benchmark.............. ceeeesnsseanns seeesasanas veereereresassssassasanens veren 13
6. Results of single-precision SVD benchmark...........cceveens vereranasesssnerertnresassenesasase veeverasasees .14
7. Results of double-precision SVD benchmarkccoveveveveenenee reerereretsrerenaens cersseeneessasnaaes 15
8. Results of medium-size-code DENCRMAIKcceverererecreninnenenseesenenenrserereassssssssesssneresessases 16
9. Results of large-code benchmark reseeesrenne et snsastsnsrabesesasresae veeseeresesasenenanasseses w17

iJ..’JI.)lo.. Z'ul' J
¥TIS 4RA21
DY(C TA3 i

Unansewnyed i
¢ Justificattion e,

By
Distribution

4vailability Cuoda3

Avalil amf/cr !
Digt Special

3]

— ml.—...—_-- -

1. Introduction

In recent years, some effort has been made to determine whether personal
computers or workstations of similar size can carry out calculations of the
electromagnetic pulse (EMP) environment produced by nuclear explosions.
Generally, such calculations involve time-dependent finite-difference solu-
tions in one, two, or three spatial dimensions. Supporting calculations are
often done in the frequency domain and transformed to the time domain by
fast Fourier transform (FFT) techniques. To date, only a few codes for EMP
calculation have been successfully ported to such small systems because of
the speed, memory, and disk storage limitations of personal computers and
workstations.

|
This report presents some results of a series of limited comparisons made i
between an IBM RISC System 6000, model 320 (hereinafter called an RS \
6000/320), an IBM RISC System 6000, model 530 (hereinafter called an RS
6000/530), and a selection of computers available to the authors, varying in
speed from an IBM PC-AT personal computer to a Cray X-MP supercom-
puter. To enable us to make these comparisons, IBM made the RS systems
available to us for several weeks. We made the comparisons to demonstrate
where the RS systems fall in the spectrum of processors available at the Harry
Diamond Laboratories (HHDL), and to illustrate their potential application to
EMP codes.

The RS series is a new workstation product from IBM based on a set of
processor chips which are an outgrowth of the RT technology marketed in the
1980’s. The RT technology was a first-generation reduced instruction set
computer (RISC) design using concepts developed in the IBM 801 minicom-
puter. The new RS processor chips are second-generation RISC in concept,
with a smaller instruction set than found in IBM mainframe processors, but
l with more powerful instructions than commonly found in previous RISC
systems. The RS reduced instruction set implemnents a sophisticated architec-
ture, and combines into single instructions several functions which would
take two or more instructions in many other systems. The instruction
lookahead capability is powerful enough to perform zero-cycle branching.
Loop count instructions can be done in parallel with floating-point instruc-
tions. In combination these features allow computational loops with no loop
overhead. In addition, all floating-point operations are implemented as
special cases of a single, fast, multiply-and-add primitive, allowing up to two
floating-point operations to be completed every clock period. Many other
clever design enhancements have produced a system of extraordinary power.

We do not go into further details of the RS 6000 design, since these are well
documented [1]. However, we do point out three important differences be-
tween the RS 6000 model 320 and model 530:

* 50-ns clock period in the 320 and 40-ns clock period in the 530;
* 32-kbyte data cache in the 320 and 64-kbyte data cache in the 530; and

* 64-bit-wide memory data bus in the 32C and 128-bit-wide memory data bus
in the 530.

We address only the computational speed of the RS 6000/320 and RS 6000/
530inconnection with floating-point problems and, briefly, with the Dhrystone
[2] and Landmark [3] benchmarks. Although the systems have extensive
graphics capability, graphics is not within our special expertise, and we made
no attempt to compare graphics performance.

2. Compatibility With Other Systems

The RS 6000 uses AIX, the IBM implementation of Unix, as the native
operating system, with full TCP/IP network support. Our access to the RS
6000 was through either the system console, often using a mouse-driven X-
winJdows interface, or an Ethernet local area network via TCP/IP network
protocol, supporting Telnet virtual terminal and FTP file transfer applica-
tions. No problems were encountered in the network interface. One of the
HDL test personnel could occasionally “hang” the console X-windows inter-
face, but was unable to derive which particular sequence of operations caused
the problem.

Several of the Fortran codes tested contain very long sections of complex
coding that tax most compilers. That is, these codes are “compiler breakers.”
Some compilers have acquired reputations as solid and reliable, while others
arerecognized as “flaky” and require close watching. Just so, some compilers
we used failed to execute the test codes correctly. In some cases, use of single
precision caused inaccurate results, out this was not treated as a compiler
failure. Generally, the IBM “xIf” Fortran-77 compiler used on the RS 6000
performed extremely well, successfully running every code we tested. Only
one irregularity was encountered, in which xIf failed to correctly type a
REAL*8 FUNCTION when the REAL*$ typing was included iz a prefix to
the FUNCTION statement introducing the function definition. We easily
worked around this problem by using an untyped FUNCTION statement
followed by a REAL*§ type statement typing the function name. This was not
truly a bug in the compiler, because the VS Fortran compiler for the 3090
responds the same way, as documented in the VS Fortran manual. Unfortu-
nately, other compilers prefer the REAL*8 as a prefix to the FUNCTION

statement and reject the IBM usage (where “REAL” is the prefix and “*8” is
asuffix to the function name). Thus, the only usage accepted by bothIBM and
non-IBM compilers is a separate type statement to declare the function type.

Some attention was devoted to exercising the PCSIM simulator with a
number of PC-DOS software products. Several word processors and text
editors were tested, plus a number of graphics programs. The simulator ran
all tests perfectly. However, the simulator does not support code invoking a
math coprocessor, which could be a significant limitation for some spread-
sheets and other computational applications. The Landmark [3] benchmark
for PC-DOS systems was run on the simulator, and rated the simulator,
running on an RS 6000/320, as half as fast as a 6-MHz PC-AT, or as equally
fast as a “turbo” PC-XT with an 8088 running at 8 MHz. Although several
simulation parameters could be tuned, the speed of the simulation varied little.
The same benchmark ran twice as fast on an RS 6000/530 system.

3. Speed Comparisons

Four classes of speed comparisons were made, including one C-language
comparison for speed of integer operations and three Fortran-77 comparisons
for speed of floating-point operations. The C-language comparison is the
well-known Dhrystone [2] benchmark. The three Fortran-77 comparisons
fall into small-, medium-, and large-size codes. The small codes can be run
on small personal computers. The medium codes generally cannot be run on
small personal computers, but often can be run on systems with several
megabytes (Mbytes) of memory. The large codes require more than 20 to 25
Mbytes of memory and 20 to 400 Mbytes of disk space (for output).

Systems available to us for the comparisons were as follows:

¢ an IBM PC-AT personal computer with an 8-MHz 80286 processor, a 10-
MH?z 80287 math coprocessor, 640 kbytes of random access memory (RAM),
and 70 Mbytes of disk storage;

* a Compaq Deskpro-386 personal computer with a 20-MHz 80386 processor,
a20-MHz 80387 math coprocessor, a 20-MHz Microway Weitek 1167 math
coprocessor, 13 Mbytes of RAM, and 300 Mbytes of disk storage;

* a locally integrated personal computer with American Megatrends, Inc.
(AMI) motherboard supporting a20-MHz 80386 processor, a 20-MHz 80387
math coprocessor, 8§ Mbytes of RAM, and 140 Mbytes of disk storage;

» aCray X-MP, available only for the small Fortran-77 benchmarks, witha7.5-
ns cycle time;

 an IBM 3090-300 mainframe with Vector Facility, 64 Mbytes of main
memory, 128 Mbytes of extended memory, and over 40 Gbytes of disk
storage;

+ anIBM RS 6000/320 workstation with a 50-ns clock, 24 Mbytes of RAM, and
about 600 Mbytes of disk storage;

» anIBMRS 6000/530 workstation with a40-ns clock, 48 Mbytes of RAM, and
about 1.5 Gbytes of disk storage.

For the tests on the 80286 and 80386 systems, we selected three Fortran-77
compilers:

* an 8-bit compiler, IBM Personal Computer Fortran 2.00, generating library
calls for 8087 coprocessor instructions;

» a 16-bit compiler, Ryan-McFarland Fortran 2.11, generating inline code for
80287 instructions;

* a32-bit compiler, NDP Fortran-386 1.4e supported by Pharlap 386 v2.2 DOS
Extender, generating inline code for either the 80387 or Weitek 1167 math
coprocessor instructions.

No optimization flags were needed for the IBM compiler or the Ryan-
McFarland compiler, which automatically perform available optimizations.
The NDP compiler was run with a lower optimization level, “-n3”, and a
higher optimization level, “-n2 -n3 -OLM?”, for tests run with the 80387 math
coprocessor. Also, the NDP compiler was run with alower optimization level,
“-n4”, and a higher optimization level, “-n4 -OLM?”, for tests run with the
Microway Weitek 1167 math coprocessor.

The Cray advanced Fortran-77 compiler “cft77”” was used without flags on
the Cray X-MP, since it performs full optimization by default.

For the IBM 3090, IBM VS Fortran Release 2 was used at optimization level
3 without vectorization (NOVECTOR), and at optimization level 3 with
vectorization (VECTOR). Few of the codes tested could benefit from vectori-
zation. All that could so benefit were tested with the vectorization option.

The RS 6000 native Fortran-77 compiler xIf was used with no optimization
and with optimization level “~-QOPT” for the tests, Since none of the Fortran
codes tested could benefit from the inlining option, we have not included any
results with the inlining option. (“Inlining” is replacing a subprogram CALL
with aninline expansion of the body of the subprogram called, eliminating the

overhead of the CALL and allowing the subprogram to be incorporated into
optimization done by the compiler for the calling program.)

Our Dhrystone [2] benchmark has been ported froni the Ada language to C.
Itisintended toresemble “typical” programs, and does not use floating-point
operations. Obviously, it is not typical of scientific or engineering programs,
but characterizes data-handling problems. We used Borland Turbo C Version
2.0 to compile the PC-DOS tests, Cray “cc” to compile the Cray X-MP test,
and RS 6000 “xic” to compile the RS 6000 tests. The latter was used
(1) without optimization and (2) with optimization and inlining “-O -Q” in
the tests. The PC-DOS version of the benchmark was also run under the
PCSIM emulator on the RS 6000 systems.

3.1 Dhrystone Comparison

-~ Py

The Dhrystone test results are shown in table 1. No test was run on thc IBM
3090 because a C compiler was not available on that system. Surprisingly, the
RS 6000 systems run the benchmark 2.5 to 3.0 times faster than the Cray X-
MP. The Cray architecture, which is optimized for floating-point operations
rather than byte operations, takes about 17 times more clock cycles to perform
the benchmark than the RS 6000. The PCSIM result is comparable to the
Dhrystone speed of a PC-XT running a 4.77-MHz 8088. For comparison, a
DEC VAX 11/780 runs close to 1600 Dhrystones/s.

Table 1, Dhrystone benchmark results

{Best optimizations were used in each case except for the RS 6000 results, which include (1) no optimization,
(2) -0 standard optimization, and (3) -O -Q standard optimization and inlining (inline expansion of short
subprogram units, avoiding overhead of a CALL.]

Configuration Compiler No. Loops Time (s) Dhrystones/s

RS 6000/530 xlc -0 -Q 500,000 6.17 81,037
RS 6000/320 xlc -0.-Q 500,000 7.69 65,020
RS 6000/530 xlc -O 500,000 8.03 62,267

| RS 6000/320 xlc -0 500,000 9.76 51,230
Cray X-MP (one CPU) Cray cc 500,000 18.564 26,934
RS 6000/320 xlc (no opt) 500,000 20.81 24,027
20-MHz 80386/80387¢ Turbo C 50,000 791 6,321
8-MHz 80286/80287 Turbo C 50,000 29.0 1,724
RS 6000/320 PCSIMe 50,000 145 344

@ 64-kbyte memory cache used.

+10-MHz 80287, but Dhrystone does not use floating-point arithmetic.
‘PCSIM is a softiware emulation of an 8088 running PC-DOS.

3.2 Whetstone Comparison

The Whetstone [4] comparison is widely used to estimate the floating-point
efficiency of processor/compiler systems. It incorporates generally non-
vectorizable loops to perform basic arithmetic and transcendental function
evaluations. A significant fraction of the benchmark is devoted to overhcad
of subprogram CALLs and loop iteration. The Cray X-MP does not imple-
ment REAL*4 precision and appears only in the double-precision small code
comparisons. Single-precision Whetstones are given in table 2 and double-

Table 2. Results of single-precision Whetstone benchmark
[Full optimizations were used where compiler flags are not indicated; note: SP = single precision.]

. . No. SP M . SP M
Configuration Compiler ! \:’hctstgnga Time (s) Whlc)t;tocng; /s
RS 6000/530 xif -QOPT 100 3.96 25.3
. IBM VS Fortran
IBM 3090/VF Rel. 2, OPT(3) 1000 42.94 23.3
IBM VS Fortran
IBM 3090/VF Rel. 2, OPT(3) 1000 43.70 229
VECTOR
RS 6000/320 xf -QOPT 100 4.93 20.3
RS 6000/530 xIf (no opt) 100 7.16 14.0
RS 6000/320 xif (no opt) 160 8.84 11.3
. NDP Fortran-386
20-MIz 80386/mW1167¢ 1.4e, Pharlap 386 160 27.95 3.58
v2.2, -n4 -OLM
NDP Fortran-386
20-MIHz 80386/mW1167¢ 1.4e, Pharlap 386 100 29.16 3.43
v2.2, -n4
NDP Fortran-386
1.4¢e, Pharlap 386
20-M1iz 80386/80387% V2.2, -n2 -n3 100 51 1.96
-OLM
NDP Fortran-386 |
20-MHz 80386/80387% 1.4¢, Pharlap 386 100 63 1.59
v2.2, -n3
20-MHz 80386/80387¢ RM Fortran 2.11 10 10.10 0.990
1. IBM PC Fortran
20-MHz 80386/80387* 2.00/8087 10 37.85 0.264
8-Ml1z 80286/80287¢ RM Fortran 2.11 10 49.17 0.203
) . IBM PC Fortran
8-MI1z 80286/80287 2.00/8087 10 133.80 0.075

*Microway Weitek 1167 coprocessor used.
564-kbyte memory cache used.

¢10-MHz 80287 used.

10

e e e

e e e

precision Whetstones are given in table 3. RS 6000 models 320 and 530
tightly bracket the performance of the mainframe IBM 3090 processor. Use
of the Vector Facility gives no improvement because of the absence of
vectorizable loops in the code. The RS 6000 systems run about one order of
magnitude faster than well-equipped 80386 systems and over two orders of
magnitude faster than older 80286 systems. Significantly, the model 530 runs

the double-precision benchmark as fast as the Cray X-MP.

Table 3. Results of double-precision Whetstone benchmark
[Full optimizations were used where compiler flags are not indicated; note: DP = double precision.]

. . No. DP Mega DP Mega
Configuration Compiler Whetstones Time (s) Whetstones/s
RS 6000/530 xif -QOPT 100 3.61 27.7
Cray X-MP (one CPU) Cray cft77 100 3.641 27.5
RS 6000/320 xif -QOPT 100 445 22.5
'IBM VS Fortran
IBM 3090/VF Rel. 2, OPT(3) 1000 50.68 19.7
IBM VS Fortran
IBM 3090/VF Rel. 2, OPT(3) 1000 51.27 19.5
VECTOR
RS 6000/530 xIf (no opt) 100 6.88 14.5
RS 6000/320 xIf (no opt) 100 8.56 11.7
NDP Fortran-386
20-MHz 80386/mI1167¢ 1.4e, Pharlap 386 100 34.05 2.94
v2.2, -n4 -OLM
NDP Fortran-386
20-MHz 80386/mI¥1167¢ 1.4¢, Pharlap 386 100 34.49 2.90
v2.2, -n4
NDP Fortran-386
. 1.4e, Pharlap 386
20-Ml1iz 80386/80387% v2.2, -n2 -n3 100 54 1.85
-OLM
NDP Fortran-386
20-MHz 80386/80387 1.4e, Pharlap 386 100 66 1.52
v2.2, -n3
20-Mllz 80386/80387 RM Fortran 2.11 10 11.21 0.892
8-Mlz 80286/80287¢ RM PFortran 2.11 10 54.87 0.182
IBM PC Fortran
20-MHz 80386/80387° 2.00/8087 10 75.46 0.133
. IBM PC Fortran
8-MHz 80286/80287 2.00/8087 10 258 0.039

“Microway Weitek 1167 coprocessor used.

¥64-kbyte memory cache used.

€10-MHz 80287 used.

11

33

F4T Comparison

The F4T code is a Fortran-coded fast Fourier transform, written by one of the
authors (Wyatt), which modifies an in-place decimation in time in a way that
eliminates the need for a separate bit-reversal sort of the data order. The
algorithm uses a rapidly varying stride to access and store the data. The
algorithm defeats most vectorizing compilers, although the code can, in
principle, be vectorized. Optimization of the inner loop of the code is a strong
test of a compiler’s optimization skills, because the inner loop contains two
independent indices, 14 index computations, and 20 floating-point computa-
tions. A clever compiler has many opportunities to reorder code. The
transform size done in this benchmark is 1024 points, using 2048 data words.
Single-precision results are shown in table 4 and double-precision results are
shown in table 5.

Table 4. Results of single-precision F4T benchmark
[Full optimizations were used where compiler flags are not indicated; note: SP = single precision.]

Configuration Compiler NO'ISP F4T Time (s) Sl P F‘?s‘
RS 6000/530 xif -QOPT 1000 74 1344
RS 6000/320 xif -QOPT 1000 9.35 107.0
IBM VS Fortran
IBM 3090/VF Rel. 2, OPT(3) 1000 9.37 106.7
VECTOR .
IBM VS Fortran)
IBM 3090/VF Rel. 2, OPT(3) 1000 940 106.4
RS 6000/530 xIf (no opt) 1000 31.52 317
RS 6000/320 xif (no opt) 1000 38.66 259
NDP Fortran-386
20-MHz 80386/mW1167¢ 1.4e, Pharlap 386 1600 106.88 9.36
v2.2, -n4 -OLM
NDP Fortran-386
20-MHz 80386/mW1167¢ 1.4, Pharlap 386 1000 120.39 8.31
v2.2, -n4
NDP Fortran-386
g 1.4e, Pharlap 386
20-MHz 80386/80387¢ v2.2 -n2 -n3 100 26.19 3.82
-OLM
NDP Fortran-386
20-MHz 80386/80387 1.4e, Pharlap 386 100 27.74 3.60
v2.2, -n3
20-MHz 80386/80387 RM Fortran 2.11 100 40.81 245
IBM PC Fortran
20-MHz 80386/80387¢ 2.00/8087 100 170.93 0.585
8-MHz 80286/80287¢ RM Fortran 2.11 10 22.95 0.436
3 . IBM PC Fortran
8-MHz 80286/80287 2.00/8087 100 608.19 0.164

sMicroway Weitek 1167 coprocessor used.
t64-kbyte memory cache used.

10-MHz 80287 used.

12

- N
e

* (million floating-point operations per second):
Cray X-MP 100
Model 530 9.0

* Model 320 72
3090/VF 59
PC equipped with Weitek 1167 36
PC equipped with 80387 20

A detailed count of operations shows that, for a 1024-point transform, FAT
executes a total of 55,322 floating-point operations and 21 transcendental
i function evaluations. Further, 38,642 integer operations are possible, al-
though compiler optimization may reduce this number substantially. Addi-
tional operations related to DO-loop index updating and branching are
performed for 6,237 loops. Using the elapsed times tabulated for double-
precision FAT, we calculate the following floating-point speeds in Mflops

These figures are consistent with most published data, we believe. For

example, IBM advertises double-precision speeds of 7.4 and 10.9 Mflops for

Table 5. Results of double-precision F4T benchmark
[Full optimizations were used where compiler flags are not indicated. Entries marked “fail” signify that the code

failed to run properly because of bad code generated by the compiler; note: DP = double precision.]

. . No. DP F4T \ DP F4T
Configuration Compiler Loops Time (s) Loops/s
Cray X-MP (one CPU) Cray cft77 1000 5.55 180.2
RS 6000/530 xIf -QOPT 1000 6.18 161.8
RS 6000/320 xif -QOPT 1000 7.68 130.2
’ ' IBM VS Fortran
IBM 3090/VF Rel. 2, OPT(3) 1000 9.36 106.8
VECTOR .
) ; IBM VS Fortran
IBM 3090/VE Rel. 2, OPT(3) 1000 9.45 105.8
RS 6000/530 xif (no opt) 1000 30.58 327
RS 6000/320 xIf (no opt) 1000 38.03 26.3
NDP Fortran-386
20-MHz 80386/mW 1167 1.4, Pharlap 386 1000 154.89 6.46
v2.2, -n4 -OLM
NDP Fortran-386
g 1.4¢, Pharlap 386
20-M1z 80386/80387* V2.2, -n2 -3 1000 2717.05 3.61
] -OLM
\ 20-MHz 80386/80387° RM Fortran 2.11 100 49.10 2.04
. IBM PC Fortran
20-M11iz 80386/80387 2.00/3087 100 271.34 0.369
. . IBM PC Fortran
8-MHz 80286/80287 2.00/8087 10 93.75 0.107
8-MIIz 80286/80287¢ RM Fortran 2.11 10 fail fail

10-MHz 80287 used.

|

“Microway Weitek 1167 coprocessor used.
b64-kbyte memory cache used.

13

the model 320 and model 530, respectively. The low figure for the Cray
X-MP is not surprising for an unvectorized code. Although single-processor
speeds up to200 Mflops are possible for highly vectorized code onthe X-MP,
a 10-Mflop rating is representative of its scalar processing speed [5].

The optimization power of the RS 6000 xIf compiler is displayed by the
factor-of-five speedup in run times for optimized code over unoptimized
code. This strongly demonstrates the effectiveness of the optimizations done
by this compiler. At single precision, the 320 matches the 3090, and the 530
runs the comparison about 25 percent faster. Atdouble precision, the 320 runs
about 25 percent faster and the 530 runs about 50 percent faster than the 3090,
at top optimization. The Cray X-MP manages to squeak out a 10-percent
faster performance than the RS 6000/530. The RS 6000 always runs our
double-precision benchmarks faster than our single-precision benchmarks.
Compared to the Whetstone benchmark, the 80386 and 80286 systems
perform the F4T benchmark relatively slower, running from 15 to 1500 times
slower than the RS 6000/530.

34 SVD Comparison

Thelast small code used s the singular value decomposition (SVD)driverand
supporting rcutines taken from LINPACK [6], with an outer loop which we
added. To avoid various error terminations, we removed the overflow test
portion of the driver. Comparisc as were not run on the IBM 3090 or the Cray
X-MP. Generally, timing comparisons are similar to those for the Whetstone
benchmark. Single-precisionresults are given in table 6 and double-precision
results are given in table 7.

Table 6. Resulis of single-precision SVD benchmark
[Full optimizations were used where compiler flags are not indicated; note: SP = single precision.]

_— . No. SP SVD . SP SVD
Configuration Compiler Loops Time (s) Loops|s
RS 6000/530 xIf -QOPT 100 7.00 14.3
RS 6000/320 xif -QOPT 100 8.68 1.5
RS 6000/530 xIf (no opt) 100 30.25 3.31
RS 6000/320 xIf (no opt) 100 37.64 2.66
NDP Fortran-386
20-MHz 80386/mW1167¢ 1.4ec, Pharlap 386 100 78 1.28
v2.2, -n4 -OLM
NDP Fortran-386
M- 1.4e, Pharlap 386
20-MI1z 80386/80387 v2.2 -n2 -n3 1000 457 0.219
-OLM
20-MI1z 80386/80387 RM Fortran 2.11 100 516 0.194

*Microway Weitek 1167 coprocessor used.
b64-kbyte memory cache used.

14

Table 7. Results of double-precision SVD benchmark

[Full optimizations were used where compiler flags are not indicated; note: DP = double precision.]

. . No. DP SVD DP SVD
Configuration Compiler o Loops Time (s) le:of)s s
RS 6000/530 xIf -QOPT 100 6.86 14.6
RS 6000/320 xIf -QOPT 100 8.62 11.6
RS 6000/530 xif (no opt) 100 3225 3.10
RS 6000/320 xIf (no opt) 100 40.03 2.50
NDP Fortran-386
20-MHz 80386/mW1167 1.4e, Pharlap 386 100 144 0.694
v2.2, -n4 -OLM
NDP Fortran-386
1.4¢, Pharlap 386
20-MHz 80386/80387 v2.2, -n2 -n3 1000 450 0.222
-OLM
20-M11z 80386/80387 RM Fortran 2.11 100 523 0.191

“Microway Weitek 1167 coprocessor used.
b64-kbyte memory cache used.

3.5

Comparison of Medium-Size Codes

A number of well-exercised computer codes are maintained at our facility for
the purpose of modeling the physics of EMP generation by nuclear bursts.
Three medium-size codes were tested which manipulate large amounts of
data that cannot fit in the data cache of RS 6000 systems. Thus, the RS 6000
systems would be forced to move large amounts of data to and from main
memory, with fewer cache hits. Although runnable on fast 80386 systems
with sufficient RAM and disk space, these codes are too large to run on small
personal computers. One code, CHAP, was vectorized on the IBM 3090 but
would fail most of the time because of bad code generated by the compiler in
one section of the code. Another code, LEMP2, is known to vectorize well on
the Cray X-MP, but failed to vectorize significantly on the IBM 3090. Both
single- and double-precision comparisons are givenin table 8. Unfortunately,
the Cray X-MP was not available for comparison runs of the medium and
large codes.

Clearly, only the most advanced compilers could handle these codes. Al-
though all compiled “successfully,” none of the 80386 compilers ran any of
the three codes successfully or obtained the right answers in a reasonable
amount of time, except the Weitek 1167 compilation by NDP Fortran. Oddly,
the CHAP runs failed at both single and double precision with vectorization
attempted on the IBM 3090 system, although the double-precision version
would run properly occasionally when optimization was defeated in one loop.
CPU time for one successful run has been entered in the table in parentheses.
The RS 6000/530 times are close to the unvectorized 3090 times, with the
model 320 trailing slightly farther back. Relatively little optimization is being
done by the compiler to these codes, probably because of the very long main

15

Tat.e 8. Results of medium-size-code benchmark

[All times are in seconds. Entries marked “NIA” signify that the code was too large to run in 640 kbytes of memory,
the maximum available. Entries marked “fail” signify that the code failed to run properly because of bad code
generated by the compiler or associated assemblers and linkers. Dashes indicate that the run was not attempted.
Note: SP = single precision; DP = double precision.]

System CHAP | CHAP | LEMP2 | LEMP2 | GLANCL | GLANCL

(SP) (DP) (SP) (DP) (SP) (DP)

TBM 3090/VF with VS)) .

IBM 3096/VF with VS

Fortran NOVECTOR | 24305 319.61 — — — 39.82

RS 6000/530 with xlf | 35995 | 29519 | 531488 | 251012 | 4537 4228

-QOPT

RoppR0wim sl | 41605 | 38406 | 669163 | 323826 | 5850 | 5407

RS 6000530 with If

oo oot 56846 | 567.51 — — 74.00 75.30

RS 6000/320 with xIf

o o) 71638 | 733.57 — — 94.69 95.60

80386/mW1167 &)

eI 3134 fail — 35,782 — —

80386/30387 & NDP)))

Fhs6re fail fail — fail _ —

80386/80387 & RM

BIs/8 9035 N/A N/A N/A — —

*Usually failed.
Ran to completion but exponent range too small for correct results.

programs (about 1500 to 2000 lines of non-comment code), and because of
the complexity of the loops being used. All three codes were written in a
“1960’s” programming style with little modularity and a great deal of store-
and-fetch of temporary results.

3.6 Comparison of Large-Size Codes

Finally, we present comparisons for three codes with Jarge memory andlarge
computation requirements typical of recent developments in computer
modeling of radiation transport (LHAPHEN) “and solution of Maxwell’s
equations (ROUNDSY and ROUND3Y). Results for the working precision
of each code are given in table 9.

The first code, LHAPHEN, is a nonvectorizable code for Monte Carlo
simulation of neutron and gammaradiation transport. Itis composed of many
subprogram units, each performing some function for the overall simulation.

16

Table 9. Results of large-code benchmark

[All times are in seconds. Dashes indicate that the run was not attempted. Vectorized code was attempted only for
ROUND3Y on the IBM 3090, because the other two codes contained no significant vectorizable computations.

Available memory was too small on the RS 6000/320 to run ROUNDSY or ROUND3Y.]
System LHAPHEN ROUNDSY ROUND3Y

IBM 3090/VF with VS Fortran

VECTOR - —_— 6309.69
IBM 3090/VF with VS Fortran

NOVECTOR 2712.45 4151.85 13,500.63
RS 6000/530 with xif -QOPT 2386.57 5905.96 14,507.51
RS 6000/320 with xIf -QOPT 3117.96 —_ —

Array storage is extensive, but within the range of a 20-Mbyte memory
system. Because it processes one particle at a time, code is executed in
straight-line fashion through dozens of subprograms, repeated in a large outer
loop in the main program. Although an ideal candidate for some massively
parallel computers where each subprocessor tracks one particle, the code does
not vectorize below the one-particle level. For this code, performance by the
RS 6000 systems brackets the mainframe IBM 3090 performance.

The second code, ROUNDSY, performs complicated interpolation of tri-
cubic spline hypersurfaces, with multiple nested short DO-loops. It generates
data in very large arrays, on the order of 30 Mbytes in size, and stores the data
on disk. In its original form this code used REAL*16 precision for some of
the interpolation, but was converted to use REAL*8 operands, instead, for the
purposes of this study. Because of the way the interpolation isdone, negligible
vectorization can be done in this code as it is written. The IBM 3090 runs this
code in about 7 0 percent of the time used by the RS 6000/530. This difference
is probably due to a very low cache hit rate on the 530 and its relatively slower
memory system, compared with the 3090’s fast 64-Mbyte main memory.

The third code, ROUND3Y, solves a three-dimensional finite-difference
model of Maxwell’s equations using a very large mesh and very large arrays.
The code was written to be easily vectorizable. The dimensionality of the
mesh arrays is 220 x 151 X 16, and all computations are done in REAL*8
precision. For this comparison, the dimensionality was reduced, ultimately,
to 220 % 151 x 4 to fit in the 48-Mbyte memory of the RS 6000/530 system
used. (A maximum of 128 Mbytes of RAM can be installed in the model 530.)
The full mesh (220 x 151 x 16) requires a 95-Mbyte region to run on the IBM
3090, and processing slows by one-third because of intense paging between
the 64-Mbyte main memory and expanded memory. A workset of 40 Mbytes
is mandatory for the full-sized mesh; otherwise, thrashing sets in on the 3090.
When a reduced mesh of 220 x 151 x 8 was attempted on the RS 6000/530,
which should “barely fit,” the system crashed when array-filling caused the
workset toreach 40 Mbytes (on the virtual memory system of the 530). Hence,

the final reduced mesh of 220 x 151 X 4 was attempted, with a successful
outcome. When the final mesh was used, we observed a workset of 28 Mbytes
during running on the 530. Without vectorization, runtimes were comparable
for the 530 and the 3090; but with vectorization, the 3090 gained slightly over
a factor of two in speed.

4. Conclusions

18

Our comparisons clearly place the RS 6000 workstations close to mainframe
computers in speed and memory capacity. Although vectorizable (or possibly
parallelizable) codes can run much faster on some vector (or parallel)
machines, the RS 6000 design runs scalar, floating-point-intensive codes at
mainframe or even supercomputer speed. For integer and byte processing
typified by the Dhrystone benchmark, the RS 6000 systems turn in very high
numbers, running up to 81,037 Dhrystones/s, three times faster than a Cray
X-MP (single processor).

The Fortran-77 compiler xIf, native to the RS 6000, successfully compiled
and ran all our test programs, with and without optimization. We used several
of our favorite “compiler breakers” without any problems occurring. Optimi-
zations performed by this compiler are of very high quality, as shown by our
F4T test, leading to speedups of a factor of five over unoptimized code.

The PC-DOS emulator software appears quite robust, running even direct-
screen writers and VGA graphics with no difficulty. Of course, performance
is slow for this software emulator, and was seen to be close to that of 4.77-
MHz 8088 or 6-MHz 80286 systems.

Performance by the RS systems was somewhat limited by slowness of the
main memory system, compared to the speed of the memory cache. Small
codes with small amounts of data were well supported by the 64-kbyte data
cache and 8-kbyte instruction cache of the RS systems, and ran fastest.
Medium and large codes tended to run somewhat slower on the RS systems,
relative to the IBM 3090 which has a faster main memory. In the case of
medium and large codes thatuse larger amounts of data than can fit in the data
cache, the fast multiply-and-add operation on the RS systems may be “data-
starved” because of the relatively longer time needed to fetch operands from
memory. In the case of small loops using cached data only, tests show that the
3090 Vector Facility can execute a (vector) multiply-and-add every three
clock periods of 25 ns each (issuing one multiply every two periods, and one
add every period), for a rate of 26.7 Mflops. For the same small loops using
only cached data, the RS 6000/530 can, theoretically, execute a (scalar)
multiply-and-add every clock period of 40 ns (with a two-period latency), for
arate of 50 Mflops. However, we did not achieve this scalar rate in any of our
benchmarks.

All small codes and the Dhrystone benchmark ran almost exactly 25 percent
faster on the model 530 than on the model 320, because of the 25-percent-
faster clock speed on the 530. Because the 32-kbyte cache and 64-bit-wide
memory bus on the model 320 are adequate for these small codes, only the
faster clock of the model 530 causes faster execution. Similarly, single-
precision versions of CHAP and LEMP2 show this same characteristic.
However, double-precision versions of CHAP and LEMP2, and the standard
version of LHAPHEN, show a 3- to 4-percent improvement in speed on the
330 over and above the effect of the faster clock. This implies that there is
potential “data starvation” in the model 320 for these codes, which is
ameliorated by the larger 64-kbyte data cache and 128-bit-wide memory bus
of the model 530. It appears that ROUNDSY execution is slowed by nearly
a factor of two because of data starvation. As with virtually all codes and
computers, a careful rewrite of the inner loops of these codes may help
alleviate the slowdown by making better use of the data cache.

The “super-scalar” ability of the RS 6000 CPU toissue and execute up to four
instructions in parallel in each clock period allows simple add, multiply, or
multiply-and-add loops to be done with no loop overhead, as has been
mentioned previously. Thus the loops are executed at “vector speed,” with
one result operand produced each clock peried. The pipeline latency is one or
two clock periods for cached data. Pipeline latency increases by memory
access time for data not in cache, and we have seen that memory bandwidth
(400 Mbytes/s for a 40-ns clock) can supply only 50 million 8-byte operands
per second. A significant enhancement to the RS 6000 design, providing a
capability equivalent to vector performance on simple loops, would involve
doubling the memory bandwidth and providing mechanisms to start data
“fetch-ahead” so that the CPU does not become data-starved. Such a feature
might increase processing speeds by a factor of two for many vectorizable
codes using unit stride, as indicated by our tests with ROUND3Y.

In the past, we have tried to upgrade personal computers in speed, memory,
and storage capacity to accommodate the running of various mainframe
computer codes, generally falling short of a satisfactory result. Even upgrades
to an 80486 processor would fall short of RS 6000 performance by roughly
a factor of four to five. Given the superior integration of CPU, memory,
storage, and software of the RS 6000, and the observed and potential speed
advantage of the RS 6000, augmenting personal computers will remain an
inferior strategy.

In conclusion, it is clear that the RS 6000 models tested are powerful enough
to allow routine running of EMP codes and the like in times comparable to
mainframe supercomputer execution times. The proximity of the user and his
interactive graphical interface to the running EMP code could stimulate a
“quantum” leap in visualization of the physics being modeled and insightinto
the EMP phenomenon.

19

5. References

(1]

(2]

[3]
[4]

[5]

[6]

IBM RISC System/6000 Technology, edited by Mamata Misra, International
Business Machines Publication SA23-2619 (1990).

Reinhold P. Weicker, Dhrystone Benchmark Program Version C/ 1.1,
CACM 27(10) (October 1984), p 1013; translated from Ada by Rick
Richardson, 1 June 1986.

Landmark CPU Speed Test: Speed Version 1.05, Landmark Software, 1142
Pomegranate Court, Sunnyvale, CA 94087 (1986).

H. J. Curnow and B. A. Wichmann, A Synthetic Benchmark, Computer J. 19
(1) (February 1976), pp 43-49.

J. M. Levesque and J. W. Williamson, A Guidebook to Fortran on Supercom-
puters, Academic Press, Inc., San Diego, CA (1989); see figure 4.35 for an
example for an 8.5-ns clock X-MP.

J. J. Dongarra, C. Moler, J. Bunch, and G. W. Stewart, Linear Equation
Package (LINPACK), Applied Mathematics Division, Argonne National
Laboratory (19 March 1979).

DISTRIBUTION

Administrator

Defense Technical Information Center
Attn DTIC-DDA (2 copies)

Cameron Station, Building 5
Alexandria, VA 22304-6145

Director

Defense Nuclear Agency

Attn RAAE, Atmospheric Effects Div
Attn RAEE, EMP Effects Div

Attn TISI, Scientific Information Div

Attn RAEV, Electronics Vulnerability Div
Washington, DC 20305

Under Secretary of Defense Research
& Engineering

Attn Technical Library, 3C128
Washington, DC 20301

Director .

US Army Ballistics Research Laboratory
Attn SLCBR-DD-T (STINFO)
Aberdeen Proving Ground, MD 21005

US Army Electronics Technology &
Devices Laboratory

Attn SLCET-DD

Ft. Monmouth, NJ 07703

Commanding Officer

US Army Foreign Science & Technology Center
Attn AMXST-SC, Sciences Div

220 Seventh Street, NE

Charlottesville, VA 22901

Director

US Army Materiel Systems Analysis Activity
Attn AMXSY-MP

Aberdeen Proving Ground, MD 21005

Director

US Army Missile Laboratory (USAMICOM)
Attn AMSMI-RPT, Technical Information Div
Redstone Arsenal, AL 35809

Commander

US Army Nuclear & Chemical Agency
Attn Dr. Adam Renner, MONA-NU
7500 Backlick Road, Building 2073
Springfield, VA 22150

US Chief of Army Research Office

Attn SLCRO-MA, Dir Mathematics Div
Attn SLCRO-PH, Dir Physics Div

PO Box 12211

Research Triangle Park, NC 27709-2211

Director

Naval Research Laboratory
Attn 2600, Technical Info Div
Washington, DC 20375

Commander

Naval Surface Weapons Center
Attn E-43, Technical Library
White Oak, MD 20910

International Business Machines Corporation
Attn R. Cimini

6705 Rockledge Drive

Bethesda, MD 20817

Lawrence Livermore Laboratory
Attn Technical Library

PO Box 969

Livermore, CA 94550

Director

National Institute of Standards & Technology
Attn Library

Washington, DC 20234

21

DISTRIBUTION

Sandia National Laboratories Harry Diamond Laboratories (cont’d)
Attn Technical Library Attn Chief Scientist, SLCHD-CS
PO Box 5800 Attn Chief, SLCHD-NW
Albuquerque, NM 87185 Attn Chief, SLCHD-NW-CS

Attn Chief, SLCHD-NW-E
US Amy Laboratory Command Attn Chief, SLCHD-NW-EH
Attn Technical Director, AMSLC-TD Attn Chief, SLCHD-NW-EP

Attn Chief, SLCHD-NW-ES
Installation Support Activity Attn Chief, SLCHD-NW-P
Attn Legal Office, SLCIS-CC Attn Chief, SLCHD-NW-R

Attn Chief, SLCHD-NW-RP
USAISC Attn Chief, SLCHD-NW-RS
Attn Admin Ser Br, AMSLC-IM-VA Attn Chief, SLCHD-NW-TN
Attn Tech Pub Br, AMSLC-IM:-VP Attn Chief, SLCHD-NW-TS

Attn G. Merkel, SLCHD-NW-TN
Harry Diamond Laboratories Attn M. Bushell, SLCHD-NW-RS
Attn Laboratory Directors Attn R.J. Chase, SLCHD-NW-EP
Attn Library, SLCHD-TL (3 copies) Attn C. S. Kenyon, SLCHD-NW-EP
Attn Library, SLCHD-TL (WRF) Attn W.T. Wyatt, SLCHD-NW-EP (30 copies)

22

